Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection.
نویسندگان
چکیده
Substantial evidence now exists that intrinsic free-radical scavenging contributes to the receptor-independent neuroprotective effects of estrogens. This activity is inherently associated with the presence of a phenolic A-ring in the steroid. We report a previously unrecognized antioxidant cycle that maintains the "chemical shield" raised by estrogens against the most harmful reactive oxygen species, the hydroxyl radical (*OH) produced by the Fenton reaction. In this cycle, the capture of *OH was shown to produce a nonphenolic quinol with no affinity to the estrogen receptors. This quinol is then rapidly converted back to the parent estrogen via an enzyme-catalyzed reduction by using NAD(P)H as a coenzyme (reductant) and, unlike redox cycling of catechol estrogens, without the production of reactive oxygen species. Due to this process, protection of neuronal cells against oxidative stress is also possible by quinols that essentially act as prodrugs for the active hormone. We have shown that the quinol obtained from a 17beta-estradiol derivative was, indeed, able to attenuate glutamate-induced oxidative stress in cultured hippocampus-derived HT-22 cells. Estrone quinol was also equipotent with its parent estrogen in reducing lesion volume in ovariectomized rats after transient middle carotid artery occlusion followed by a 24-h reperfusion. These findings may establish the foundation for a rational design of neuroprotective antioxidants focusing on steroidal quinols as unique molecular leads.
منابع مشابه
Benzothiophene Selective Estrogen Receptor Modulators Provide Neuroprotection by a novel GPR30-dependent Mechanism.
The clinical benzothiophene SERM (BT-SERM), raloxifene, was compared with estrogens in protection of primary rat neurons against oxygen-glucose deprivation (OGD). Structure-activity relationships for neuroprotection were determined for a family of BT-SERMs displaying a spectrum of ERα and ERβ binding affinity and agonist/antagonist activity, leading to discovery of a neuroprotective pharmacopho...
متن کاملRole of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection.
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo m...
متن کاملNeuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury
In recent years there has been a growing body of clinical and laboratory evidence demonstrating the neuroprotective effects of estrogen and progesterone after traumatic brain injury (TBI) and spinal cord injury (SCI). In humans, women have been shown to have a lower incidence of morbidity and mortality after TBI compared with age-matched men. Similarly, numerous laboratory studies have demonstr...
متن کاملAnti-oxidative neuroprotection by estrogens in mouse cortical cultures.
Estrogen replacement therapy in postmenopausal women may reduce the risk of Alzheimer's disease, possibly by ameliorating neuronal degeneration. In the present study, we examined the neuroprotective spectrum of estrogen against excitotoxicity, oxidative stress, and serum-deprivation-induced apoptosis of neurons in mouse cortical cultures. 17beta-estradiol as well as 17alpha-estradiol and estron...
متن کاملGenistein activates the 3',5'-cyclic adenosine monophosphate signaling pathway in vascular endothelial cells and protects endothelial barrier function.
The soy phytoestrogen, genistein, has an array of biological actions, including weak estrogenic effects, inhibition of tyrosine kinase, and cellular antioxidant activity. Recent studies showed that genistein may improve vascular function, but the mechanism is unclear. We show that genistein stimulates intracellular cAMP accumulation in intact bovine aortic endothelial cells and human umbilical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 20 شماره
صفحات -
تاریخ انتشار 2003